The Replication Paradox: Combining Studies Can Decrease Accuracy of Effect Size Estimates
نویسندگان
چکیده
Replication is often viewed as the demarcation between science and non-science. However, contrary to the commonly held view, we show that in the current (selective) publication system replications may increase bias in effect size estimates. Specifically, we examine the effect of replication on bias in estimated population effect size as a function of publication bias and the studies’ sample size or power. We analytically show that incorporating the results of published replication studies will in general not lead to less bias in the estimated population effect size. We therefore conclude that mere replication will not solve the problem of overestimation of effect sizes. We will discuss the implications of our findings for interpreting results of published and unpublished studies, and for conducting and interpreting results of meta-analyses. We also discuss solutions for the problem of overestimation of effect sizes, such as discarding and not publishing small studies with low power, and implementing practices that completely eliminate publication bias (e.g., study registration).
منابع مشابه
The Replication Paradox
Replication is often viewed as the demarcation between science and nonscience. However, contrary to the commonly held view, we show that in the current (selective) publication system replications may increase bias in effect size estimates. Specifically, we examine the effect of replication on bias in estimated population effect size as a function of publication bias and the studies’ sample size...
متن کاملTwo-stage study designs combining genome-wide association studies, tag single-nucleotide polymorphisms, and exome sequencing: accuracy of genetic effect estimates
Genome-wide association studies (GWAS) test for disease-trait associations and estimate effect sizes at tag single-nucleotide polymorphisms (SNPs), which imperfectly capture variation at causal SNPs. Sequencing studies can examine potential causal SNPs directly; however, sequencing the whole genome or exome can be prohibitively expensive. Costs can be limited by using a GWAS to detect the assoc...
متن کاملCorrection for bias in meta- analysis of little- replicated studies
Handling Editor: Holger Schielzeth Abstract 1. Meta-analyses conventionally weight study estimates on the inverse of their error variance, in order to maximize precision. Unbiased variability in the estimates of these study-level error variances increases with the inverse of study-level replication. Here, we demonstrate how this variability accumulates asymmetrically across studies in precision...
متن کاملUnbiased estimation of odds ratios: combining genomewide association scans with replication studies
Odds ratios or other effect sizes estimated from genome scans are upwardly biased, because only the top-ranking associations are reported, and moreover only if they reach a defined level of significance. No unbiased estimate exists based on data selected in this fashion, but replication studies are routinely performed that allow unbiased estimation of the effect sizes. Estimation based on repli...
متن کاملOvercoming the winner's curse: estimating penetrance parameters from case-control data.
Genomewide association studies are now a widely used approach in the search for loci that affect complex traits. After detection of significant association, estimates of penetrance and allele-frequency parameters for the associated variant indicate the importance of that variant and facilitate the planning of replication studies. However, when these estimates are based on the original data used...
متن کامل